Хорда это


Бывают случаи в жизни, когда знания, полученные во время школьного обучения, очень полезны. Хотя во время учебы эти сведения казались скучными и ненужными. Например, как можно использовать информацию о том, как находится длина хорды? Можно предположить, что для специальностей, не связанных с точными науками, такие знания малопригодны. Однако можно привести много примеров (от конструирования новогоднего костюма до сложного устройства аэроплана), когда навыки решения задач по геометрии являются нелишними.

Понятие «хорда»

Данное слово означает «струна» в переводе с языка родины Гомера. Оно было введено математиками древнего периода. длина хордыХордой обозначают в разделе элементарной геометрии часть прямой линии, которая объединяет две любые точки какой-либо кривой (окружности, параболы или эллипса). Другими словами, данный связующий геометрический элемент находится на прямой, пересекающей заданную кривую в нескольких точках. В случае окружности длина хорды заключена между двумя точками этой фигуры.


Часть плоскости, ограниченная прямой, пересекающей окружность, и ее дугой называют сегментом. Можно отметить, что с приближением к центру длина хорды увеличивается. Часть окружности, находящуюся между двумя точками пересечения данной прямой, называют дугой. Ее мерой измерения является центральный угол. Вершина данной геометрической фигуры находится в середине круга, а стороны упираются в точки пересечения хорды с окружностью.

Свойства и формулы

Длина хорды окружности может быть вычислена по следующим условным выражениям:длина хорды окружности

L =D×Sinβ или L=D×Sin(1/2α), где β – угол при вершине вписанного треугольника;

D – диаметр окружности;

α – центральный угол.

Можно выделить некоторые свойства данного отрезка, а также других фигур, связанных с ним. Эти моменты приведены в следующем списке:

  • Любые хорды, находящиеся на одинаковом расстоянии от центра, имеют равные длины, при этом обратное утверждение также верно.
  • Все углы, которые вписаны в окружность и опираются на общий отрезок, который объединяет две точки (при этом их вершины находятся в одной стороне от данного элемента), являются идентичными по величине.

  • Самая большая хорда является диаметром.
  • Сумма любых двух углов, если они опираются на данный отрезок, но при этом их вершины лежат в разных сторонах относительно него, составляет 180о.
  • Большая хорда — по сравнению с аналогичным, но меньшим элементом — лежит ближе к середине данной геометрической фигуры.
  • Все углы, которые вписаны и опираются на диаметр, равны 90˚.

fb.ru

Хорда и расстояние до центра окружности

  • Если расстояния от центра окружности до хорд равны, то эти хорды равны.
  • Если хорды равны, то расстояния от центра окружности до этих хорд равны.
  • Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше.
  • Если расстояние от центра окружности до хорды меньше, то эта хорда больше. Если расстояние от центра окружности до хорды больше, то эта хорда меньше.
  • Наибольшая возможная хорда является диаметром.
  • Наименьшая возможная хорда является точкой.
  • Если хорда проходит через центр окружности, то эта хорда является диаметром.
  • Если расстояние от центра окружности до хорды равно радиусу, то эта хорда является точкой.
  • Серединный перпендикуляр к хорде проходит через центр окружности.

Хорда и диаметр

  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам.
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр перпендикулярен хорде, стягивающей эту дугу.

Хорда и радиус

  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде.
  • Если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам.
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
  • Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.

Хорда и вписанный угол

  • Если вписанные углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то эти углы равны.
  • Если пара вписанных углов опирается на одну и ту же хорду и вершины этих углов лежат по разные стороны этой хорды, то сумма этих углов равна 180°.
  • Если вписанный и центральный углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то вписанный угол равен половине центрального угла.
  • Если вписанный угол опирается на диаметр, то этот угол является прямым.

Хорда и центральный угол

  • Если хорды стягивают равные центральные углы, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные центральные углы.
  • Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
  • Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.

Хорда и дуга

  • Если хорды стягивают равные дуги, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные дуги.
  • Из дуг, меньших полуокружности, большая дуга стягивается большей хордой, меньшая дуга стягивается меньшей хордой.
  • Из дуг, меньших полуокружности, большая хорда стягивает большую дугу, меньшая хорда стягивает меньшую дугу.
  • Из дуг, больших полуокружности, меньшая дуга стягивается большей хордой, большая дуга стягивается меньшей хордой.
  • Из дуг, больших полуокружности, большая хорда стягивает меньшую дугу, меньшая хорда стягивает большую дугу.
  • Хорда, стягивающая полуокружность, является диаметром.
  • Если хорды параллельны, то дуги, заключённые между этими хордами (не путать с дугами, стягиваемыми хордами), равны.

Другие свойства

  • При пересечении двух хорд, получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой (см. рисунок).
  • Если хорда делится пополам какой-либо точкой, то её длина самая маленькая, по сравнению с другими хордами, проведёнными из этой точки.

ru-wiki.org

Политика конфиденциальности

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

youclever.org

Хорда в геометрии

Большинство с термином «хорда» встречаются еще в школе, на уроках геометрии. В этом контексте слово «хорда» означает некоторый отрезок прямой линии, которые соединяет между собой две точки одной кривой. В качестве кривой может быть рассмотрена окружность, эллипс, парабола и т. д. Фрагмент кривой между двумя крайними точками хорды — это дуга. Плоская фигура между хордой и дугой — это сегмент.


В статье нашего сайта — Как найти хорду представлена формула по нахождению хорды и пошаговая инструкция по решению подобных задач. В статье — Как называется отрезок, соединяющий две точки окружности вы найдете свойства хорды.

Хорда, которая проходит через центр окружности — это диаметр. Поэтому тем, кто более подробно интересуется термином «хорда» в контексте геометрической науки, также будет полезно прочитать статью:Как найти диаметр окружности.

Хорда в зоологии

Некоторым видам существ, а именно типу «хордовых», присуще наличие хорды. В данном контексте хордой называется длинный эластичный продольный тяж. У большинства представителей вида хорда присутствует только в период эмбрионального развития. В основном у низших классов вида хорда сохраняется на всю жизнь. У остальных же она сменяется позвоночником. Хорда у этих организмов состоит из клеток энтодермального происхождения и располагается на брюшной поверхности нервной трубки.

Вообще, к типу «хордовые» относится порядка 43 тысяч видов животных. Они обитают в морях, океанах, реках и озерах, на поверхности и в почве континентов и островов. Такое распространение они получили благодаря разнообразному внешнему облику и размерам. Например, к типу хордовых относятся мелкие рыбки и лягушки до 2-3 сантиметров длиной и гигантские виды китов длиной до 30 метров и весом до 150 тонн.

Хорда в социологии


В социологии принято называть хордой самый примитивный тип организации. И в данном случае под организацией будем понимать объединение людей или государственную структуру, созданную с определенной целью и принципами работы. Примитивный тип организации подразумевает минимальное количество или полное отсутствие иерархических ступеней внутри организаций. Стало быть, основные задачи организации примерно поровну распределены между всеми членами организации.

Существуют и другие типы организаций. Например, по принципу взаимодействия с внешней средой выделяют:

  • Механические организации (они не способны адаптироваться к внешним изменяющимся условиям);
  • Органические организации (склонны к адаптации).

По типу взаимодействия, которое складывается внутри организации, выделяют

  • Традиционные организации (в них управление происходит по линейному принципу, сверху вниз);
  • Дивизионные организации (т. е. организация состоит из относительно автономных отделений);
  • Матричные организации (работа в них складывается вокруг конкретных проектов).

По типу взаимоотношений организации с индивидом выделяют

  • Корпоративные (т. е. закрытые и авторитарные);
  • Индивидуалистические (свободные и открытые).

elhow.ru